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Abstract—This paper proposes a reduced complexity ordered
statistics decoding (OSD) algorithm for linear block codes, the
namely order skipping (OS)-OSD algorithm. An approximated
correlation distance lower bound (CDLB) is derived by utilizing
likelihood of the received symbols over the least reliable positions
(LRPs). It enables the assessment of whether the higher-order
decoding can yield a more likely codeword estimation. If not,
they can be skipped. Error-correction performance of the OS-
OSD is analyzed. In particular, the decoding error probability
of OS-OSD with order one is theoretically characterized. Our
simulation results verify that the OS-OSD can achieve a signifi-
cant complexity reduction over the state-of-the-art OSD without
compromising the decoding performance.

Index Terms—Linear block codes, maximum-likelihood decod-
ing, ordered statistics decoding, reduced complexity

I. INTRODUCTION

The realization of ultra-reliable low-latency communication
(URLLC) requires the support of competent short-to-medium
length channel codes. The transmission limit of a finite length
coded system has been characterized in [1]. Recent researches
in short-to-medium length codes have shown that the ordered
statistics decoding (OSD) [2] [3] of BCH codes can yield a per-
formance that is close to the finite length transmission limit [4].
In the OSD, the most reliable independent positions (MRIPs)
of a received word are first identified. A number of test error
patterns (TEPs) are then superimposed onto the hard-decision
of the MRIPs, forming a list of test messages. They are re-
encoded by a systematic generator matrix (SGM) in which
columns of the MRIPs form an identity submatrix, yielding
a list of codeword candidates. Note that the identification of
the MRIPs and the generation of the SGM are realized by
Gaussian elimination (GE). The correlation distance between
the codeword candidate and the received symbol sequence is
utilized to assess the likelihood of the codeword candidate.
The candidate that yields the smallest correlation distance
will be selected as the decoding output. However, it should
be noted that the number of TEPs increases exponentially
with the decoding order, leading to an exponential complexity
of the OSD. Therefore, despite its competency in decoding
BCH codes, the OSD complexity remains challenging for
practice. In order to reduce the complexity, several operational
skipping rules and stopping rules have been proposed [5]–
[8]. The skipping rules facilitate the decoding by eliminating
some TEPs, while the stopping rules identify the optimal

codeword candidate in the decoding output list, hence the
decoding can be terminated earlier. Besides, a segmentation-
discarding rule has been proposed in [9], dividing the MRIPs
into several segments for reducing the complexity. The OSD
variants utilizing the constraint of the parity-check matrix to
reduce the number of TEPs have been proposed in [10]–[11].
There also exist several approaches to reduce the decoding
order by utilizing information outside the MRIPs [12]–[14].
Meanwhile, OSD complexity reduction can also be achieved
through reducing the GE complexity [15]–[16]. Recent research
of [17] has shown that the BCH codeword candidates can be
obtained by the SGM of a Reed-Solomon code and GE is no
longer needed.

In order to eliminate the redundant decoding effort, an order
skipping rule has been proposed in the so-called fast and
scalable OSD (FOSD) in [18]. It estimates the correlation
distance lower bound (CDLB) of the codeword candidates
that are generated in the higher-order decoding. Consequently,
the higher-order decoding can be skipped if they are unlikely
to yield a more likely codeword. However, this CDLB is
empirical. Its inevitable looseness results in limited complexity
reduction. In this work, a more general and accurate CDLB
is characterized. It utilizes likelihood of the received symbols
over the least reliable positions (LRPs), adapting the CDLB to
the channel. As a result, it can better identify the redundant
high order decoding attempts, leading to a more significant
complexity reduction. The decoding error probability upper
bound of this order skipping (OS)-OSD is analyzed. In par-
ticular, the decoding error probability of the OS-OSD with
a decoding order of one is theoretically characterized. Our
simulation results verify the above analysis and demonstrate
the complexity merit of the proposed OS-OSD. They also show
that the affiliated performance loss over the prototype OSD is
negligible. In return, this demonstrates the accuracy of our
proposed CDLB.

II. ORDERED STATISTICS DECODING

Let F2 = {0, 1} denote the binary field. Let C(n, k, d)
denote a binary linear block code of length n, dimension k
and minimum Hamming distance d. Let G ∈ Fk×n

2 denote
the generator matrix of C(n, k, d). We use [β]ba to denote a β-
sequence (βa, βa+1, · · · , βb). Assume a codeword c = [c]n1 ∈
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Fn
2 is modulated with binary phase shift keying (BPSK) with

the mapping of 0 7→ 1, 1 7→ −1. The modulated symbol
sequence is transmitted through an additive white Gaussian
noise (AWGN) channel with a noise variance of N0/2. Let
r = [r]n1 ∈ Rn denote the received symbol sequence. That says
rj = (−1)cj +wj for j = 1, 2, · · · , n, where wj is the AWGN
with zero mean and variance N0/2. Let P (rj |cj) denote the
channel observations. The log-likelihood ratio (LLR) of rj is
defined as Lj = ln

P (rj |cj=0)
P (rj |cj=1) , which can be further derived

as Lj =
4rj
N0

. Accordingly, let y = [y]n1 ∈ Fn
2 denote the hard-

decision received word, where yj = 0 if Lj > 0, or yj = 1
otherwise. Let α = [α]n1 denote the reliability sequence of r,
where αj = |rj |. A greater αj indicates the decision made
based on rj is more reliable.

In the OSD, the received symbols are first sorted in a de-
scending order of their reliabilities, yielding the sorted symbol
sequence r̃ = [r̃]n1 = Π(r), where Π denotes the permutation
function. Accordingly, columns of G are permuted, yielding
G̃ = Π(G). The GE is performed on G̃, yielding the SGM
G̃s = [Ik P̃], where Ik is a k-dimensional identity submatrix
and P̃ is the parity submatrix of size k × (n − k). Note that
if the first k columns of G̃ are not linearly independent, an
additional column permutation is required to obtain G̃s. For
simplicity, we assume that the first k columns of G̃ are ensured
with the linear independence. Therefore, the first k positions
carried by r̃ are the MRIPs. We refer to the remaining n− k
positions as the LRPs. Let c̃ = [c̃]n1 = Π(c), ỹ = [ỹ]n1 = Π(y)
and α̃ = [α̃]n1 = Π(α) denote the permuted version of c, y and
α, respectively. Given a β-sequence [β]n1 , let βB = [β]k1 and
βP=[β]nk+1 denote the MRIP segment and the LRP segment,
respectively.

The OSD with a decoding order τ is denoted as OSD (τ ). It
generates codeword candidates by re-encoding test messages.
Let e ∈ Fk

2 denote a TEP. The OSD proceeds by generating
the TEPs with increasing weights. They are superimposed onto
ỹB, yielding the test messages for re-encoding. Specifically,
in phase-i, all the weight-i TEPs are generated, where i =
0, 1, ..., τ . With a TEP e ∈ Fk

2 , the test message is generated
as e⊕ ỹB. The corresponding (permuted) codeword candidate
c̃e = [c̃e]

n
1 is generated by

c̃e = (e⊕ ỹB)G̃s. (1)

The correlation distance between c̃e and r̃ is defined as

D(c̃e, r̃) =

n∑
i=1

(c̃e,i ⊕ ỹi)α̃i. (2)

A smaller correlation distance indicates c̃e is more likely to
be the (permuted) transmitted codeword c̃, and vice versa. In
OSD (τ), the total number of codeword candidates is

Ωτ =

τ∑
i=0

(
k

i

)
. (3)

Among these candidates, the one with the minimum correlation
distance to r̃ is denoted as c̃opt. The decoding produces the

most likely codeword estimation as Π−1(c̃opt), where Π−1 is
the inverse function of Π. For a code with rate k/n ≥ 1/2, an
order of ⌈d/4− 1⌉ is sufficient for the OSD to yield a near-ML
decoding performance [3].

III. ORDER SKIPPING OSD

This section introduces the OS-OSD. The conditional ex-
pectation of the partial correlation distance that is associated
with the LRPs of r̃ is first derived. Based on this, the order
skipping condition is introduced, formulating the OS-OSD.

A. Expectation of the Partial Correlation Distance

Without loss of generality, we assume that the all-zero
codeword 0 is transmitted. Thereby, rj = 1 + wj . The
probability density function (PDF) of rj is

fr(x) =
1√
πN0

exp

(
− (x− 1)2

N0

)
. (4)

Let ẽ = [ẽ]n1 ∈ Fn
2 denote the error vector introduced by the

channel, i.e., ỹ = c̃ ⊕ ẽ. Based on (4), the conditional error
probability of ỹj can be estimated as

Pr(ẽj = 1|α̃j) =
fr(−α̃j)

fr(α̃j) + fr(−α̃j)
=

1

1 + exp(
4α̃j

N0
)
. (5)

The conditional expectation of the partial correlation distance
associated with the LRPs can be derived as

E[D(c̃P, r̃P)|α̃] = E

 n∑
j=k+1

(c̃j ⊕ ỹj) · α̃j

∣∣∣∣∣∣ α̃


=

n∑
j=k+1

E[(c̃j ⊕ ỹj)|α̃j ] · α̃j ,

(6)

where the second equality is realized based on that α̃j and α̃
provide the same information in determining the distribution
of ỹj . Since ẽj = c̃j ⊕ ỹj , it can be further derived that

E[(c̃j ⊕ ỹj)|α̃j ] = E[ẽj |α̃j ]

= Pr(ẽj = 1|α̃j) · 1 + Pr(ẽj = 0|α̃j) · 0
= Pr(ẽj = 1|α̃j). (7)

Based on (5) and (7), we have

E[D(c̃P, r̃P)|α̃] =

n∑
j=k+1

α̃j

1 + exp(
4α̃j

N0
)
. (8)

B. Order Skipping Condition

In OSD, the phase-i re-encoding generates
(
k
i

)
codeword

candidates. This implies the higher re-encoding phases dom-
inate the overall complexity. To alleviate this complexity
challenge, an order skipping condition is proposed for the
OSD. It is developed based on the approximated CDLB of
the codeword candidates that are generated in the higher re-
encoding phases.

2024 IEEE Information Theory Workshop (ITW)

449
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 24,2025 at 07:31:14 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: OS-OSD (τ )
Input: G, τ, r
Output: ĉ

1 Sort r and generate r̃ = Π(r)

2 Generate G̃s by performing GE on Π(G)
3 Generate ỹ by making hard decisions on r̃
4 For i = 0, 1, · · · , τ do
5 For every TEP e ∈ Fk

2 of weight i do
6 Generate c̃e as in (1)
7 Compute D(c̃e, r̃) as in (2)
8 If i = 0 or D(c̃e, r̃) < D(c̃b, r̃) then
9 Let c̃b = c̃e

10 Compute D(i+1)
OSD as in (11)

11 If D(c̃b, r̃) < D(i+1)
OSD then

12 Break
13 Produce ĉ = Π−1(c̃b)

For a codeword candidate c̃e, its correlation distance to r̃
can be decomposed as

D(c̃e, r̃) = D(c̃e,B, r̃B) +D(c̃e,P, r̃P). (9)

In the OSD, the TEPs are generated with an increasing weight.
For c̃e generated in phase-i, D(c̃e,B, r̃B) is lower bounded by
only counting the i smallest reliabilities of the MRIPs, i.e.,

D(c̃e,B, r̃B) ≥
k∑

j=k−i+1

α̃j . (10)

Further approximating D(c̃e,P, r̃P) as in (8), the approximated
CDLB of the codeword candidates generated in phase-i is

D(i)
OSD =

k∑
j=k−i+1

α̃j + E[D(c̃P, r̃P)|α̃]. (11)

Hence, for c̃e generated in phase-i, if c̃e ̸= c̃, it has a high
probability to exhibit D(c̃e, r̃) > D(i)

OSD. In other words, if
D(c̃e, r̃) < D(i)

OSD, it is highly probable that c̃e = c̃. Note that
for i′ > i, D(i′)

OSD > D(i)
OSD. Armed with this, the following

order skipping condition can be introduced.
At the end of phase-i, let c̃b denote the codeword candidate

that has the minimum correlation distance to r̃. If

D(c̃b, r̃) < D(i+1)
OSD , (12)

it implies the following decoding phases may not be able
to generate a more likely codeword candidate. They can
be skipped. Hence, the OSD terminates and produces the
estimated codeword as ĉ = Π−1(c̃b). Otherwise, the OSD
proceeds into phase-(i + 1). The order-τ OSD armed with
the above order skipping rule is denoted as OS-OSD (τ ) and
summarized in Algorithm 1.

If the approximated CDLB is underestimated, the probability
of skipping the higher-order decoding will be small. It results
in a limited complexity reduction. Conversely, if it is overesti-

mated, a decoding performance loss will be led to. Compared
with the CDLB of the FOSD [18] whose LRP segment is esti-
mated with an empirical factor β, the proposed CDLB of (11)
is a more general and accurate approximation. It is obtained
based on likelihood of received symbols, which can be applied
to the most of the OSD variants. Our following theoretical
analysis and numerical results will verify its accuracy.

IV. PERFORMANCE ANALYSIS OF OS-OSD

A. Ordered Statistics

Based on (4) and αj = |rj |, the PDF of αj is

fα(x) =

 0, x < 0;

1√
πN0

(
e−

(x+1)2

N0 + e−
(x−1)2

N0

)
, x ≥ 0.

The cumulative distribution function (CDF) of αj can be
further derived as

Fα(x) =

{
0, x < 0;

1−Q
(

2x+2√
2N0

)
−Q

(
2x−2√
2N0

)
, x ≥ 0,

(13)

where Q(x) =
∫∞
x

1√
2π

exp
(
−x2

2

)
dx is the standard normal

tail function. Furthermore, the PDF of α̃j is given by [19]

fα̃j(x)=
n!

(j−1)!(n−j)!
(1−Fα(x))

j−1Fα(x)
n−jfα(x). (14)

Let q = 1, 2, · · · , n and q < j, the joint PDF of α̃q and α̃j

can be derived as [19]

fα̃q,α̃j (x, y) =
n!

(q − 1)!(j − q − 1)!(n− j)!

·(1− Fα(x))
q−1 (Fα(x)− Fα(y))

j−q−1

·Fα(y)
n−jfα(x)fα(y)1[0,x](y).

(15)

where 1[a,b](y) = 1 if a ≤ y ≤ b, and 1[a,b](y) = 0 otherwise.
For a received symbol whose reliability is greater than x, the
probability of its hard decision being erroneous is derived as

Pα(x) =
Q
(

2x+2√
2N0

)
Q
(

2x+2√
2N0

)
+Q

(
2x−2√
2N0

) . (16)

Given ẽ = [ẽB ẽP], let w denote the weight of ẽB. Conse-
quently, the probability that there are s errors in the MRIPs is
given by [6]

Pr(w=s)=

∫ ∞

0

(
k

s

)
Pα(x)

s(1−Pα(x))
k−sfα̃k+1

(x)dx. (17)

B. Decoding Error Probability of OS-OSD

The decoding error probability of OS-OSD (τ ), denoted as
Pe, is upper bounded by

Pe ≤ PML + Plist,OS-OSD(τ), (18)

where PML is the ML decoding error probability and
Plist,OS-OSD(τ) is the probability that the intended codeword
c̃ is not included in the decoding output list of the OS-
OSD (τ ). It is also called the list error probability. Note that
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the upper bound for PML can be obtained by the existing
bounding techniques, e.g., the tangential bound [20]. They
usually require knowledge of the code’s weight spectrum.

In OS-OSD (τ ), there are two cases that will lead to a list
error event. The first case is when there are more than τ errors
in the MRIPs. None of the Ωτ re-encoding attempts can yield
the intended codeword c̃. The second case is when there are
s errors in the MRIPs, but the order skipping condition is
satisfied before reaching phase-s. Let Si denote the event that
the decoding terminates at the end of phase-i, where i < τ .
Therefore, the list error probability can be characterized as

Plist,OS-OSD(τ)= Pr(w>τ)+

τ−1∑
i=0

τ∑
s=i+1

Pr(Si, w=s). (19)

Based on (17), the first term of (19) can be computed as

Pr(w > τ) = 1−
τ∑

i=0

Pr(w = i). (20)

For the second term of (19), it characterizes the performance
loss over the OSD, which is incurred by skipping the higher-
order decoding. It can be aware that this depends on the
accuracy of the proposed CDLB. Please note that it remains
challenging to characterize Pr(Si, w) for i > 0. In the follow-
ing, we focus on the case of τ = 1, for which the theoretical
characterization retreats to Pr(S0, w= 1). It provides a valid
theoretical assessment for OS-OSD (1).

C. Decoding Error Probability of OS-OSD (1)

For τ = 1, the list error probability of (19) is simplified as

Plist,OS-OSD(1) = Pr(w > 1) + Pr(S0, w = 1). (21)

We further analyze Pr(S0, w = 1). In phase-0, the codeword
candidate is generated as c̃0 = ỹBG̃s = [ỹB ỹBP̃]. Therefore,
c̃0 ⊕ ỹ = [0 ỹBP̃⊕ỹP]. Since ỹ = c̃⊕ ẽ and c̃BP̃ = c̃P, we
further have c̃0⊕ ỹ = [0 ẽBP̃⊕ ẽP]. Let a set Z collect the
non-zero positions of c̃0 ⊕ ỹ, i.e.,

Z = supp([0 ẽBP̃⊕ ẽP]). (22)

Hence, the correlation distance between c̃0 and r̃ can be
written as D(c̃0, r̃) =

∑
j∈Z α̃j . Given Z , the event S0

happens if D(c̃0, r̃) < D(1)
OSD. Based on (11), we have

Pr(S0|Z)=Pr

∑
j∈Z

α̃j<α̃k+

n∑
j=k+1

α̃j

1+exp(
4α̃j

N0
)

 . (23)

Note that Pr(S0) =
∑

Z Pr(S0|Z) Pr(Z). Therefore,
Pr(S0, w = 1) of (21) can be written as

Pr(S0, w=1)=
∑
Z

Pr(S0, w = 1,Z)

=
∑
Z

Pr(S0|Z, w = 1)Pr(Z, w = 1)

≈
∑
Z

Pr(S0|Z) Pr(Z|w=1)Pr(w=1), (24)

in which we approximate Pr(S0|Z, w = 1) as Pr(S0|Z) by
ignoring the effect of w = 1.

For BCH codes, their weight distributions can be tightly
approximated by the binomial distributions. Therefore, given
w > 0, ẽBP̃ has equal probability to be any binary vector of
length n − k. Subsequently, ẽBP̃ ⊕ ẽP is also equally likely
to be any binary vector of length n− k. We have

Pr(Z|w > 0) ≈ Pr(Z|w = 1) ≈ 1

2n−k
. (25)

Therefore, (24) can be approximated as

Pr(S0,w=1)≈ 1

2n−k
Pr(w=1)

∑
Z

Pr(S0|Z), (26)

where Pr(w = 1) can be determined by (17). For the
codes whose weight spectrum cannot be approximated by the
binomial distribution, the probability of Pr(Z|w = 1) can be
computed by using their weight spectrum [6].

We further analyze the computation of Pr(S0|Z). Let Zc =
{k + 1, k + 2, · · · , n}\Z and g(x) = x

1+exp( 4x
N0

)
. By defining

φZ([α̃]
n
k ) = α̃k +

∑
j∈Z

(g(α̃j)− α̃j) +
∑
j∈Zc

g(α̃j), (27)

Pr(S0|Z) of (23) can be re-characterized as

Pr(S0|Z) = Pr(φZ([α̃]
n
k ) > 0). (28)

Since α̃j can be approximated as a Gaussian distributed ran-
dom variable [6], g(α̃j) can similarly be considered Gaussian
distributed, given the approximated linearity of g(x). Let

θj =

 α̃j , j = k;
g(α̃j), j ∈ Zc;
g(α̃j)− α̃j , j ∈ Z

(29)

denote each term in the summation of (27). Using (14) and
(15), the expectation and variance of φZ([α̃]

n
k ) be computed

as
E[φZ([α̃]

n
k )] =

∑
j∈{k,k+1,··· ,n}

E[θj ]; (30)

V[φZ([α̃]
n
k )] =

∑
p,j∈{k,k+1,··· ,n}

V[θp, θj ], (31)

where V[θp, θj ] denotes the covariance of two random vari-
ables θp and θj . By assuming φZ([α̃]

n
k ) to be Gaussian

distributed, Pr(S0|Z) of (28) can be estimated as

Pr(φZ([α̃]
n
k ) > 0) ≈ Q

(
−E[φZ([α̃]

n
k )]√

V[φZ([α̃]nk )]

)
. (32)

Therefore,
∑

Z Pr(S0|Z) can be estimated by traversing over
all 2n−k possible supports Z . The decoding error probability
upper bound of OS-OSD (1) given by (18) can be estimated. Its
tightness will be verified via simulations in Section V, which
will also show the performance loss incurred by this order
skipping rule is negligible.

For the OS-OSD with τ > 1, the performance analysis
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Fig. 1. Performance of OS-OSD (1).

becomes challenging. First of all, for 0 < i < τ , the
event Si can occur only if no order skipping occurs prior
to phase-i. Moreover, the most likely codeword candidate c̃b
is selected from a list. These two prerequisites of Si make
characterizing Pr(Si, w) of (19) even more difficult. However,
our simulation results of Section V will verify that the OS-
OSD with τ > 1 can yield a significant complexity reduction
without compromising the decoding performance.

V. SIMULATION RESULTS

Fig. 1(a) shows the frame error rate (FER) performance
of the (31, 21) BCH code with OS-OSD (1) over the AWGN
channel. The ML decoding performance of the code [21] and
the OS-OSD (1) decoding error probability (Pe) upper bound
of (18) are also shown. Fig. 1(a) shows that OS-OSD (1) can
yield a near-ML decoding performance for this code. The FER
performance of OS-OSD (1) is tightly upper bounded by the
characterization of (18). The theoretical characterization of
Pr(S0, w = 1) is in line with the simulation at most of the
SNR region. As the SNR continues to increase, it starts to
deviate. This is due to the assumption that φZ([α̃]

n
k ) being

Gaussian distributed becomes invalid as the SNR increases.
For this code, Pr(S0, w = 1) > Pr(w > 1) appears in
most of the shown SNR region, indicating Pr(S0, w = 1)
dominates in the list error probability of (21). However, with
Pr(S0, w = 1) < PML, the performance loss incurred by this
order skipping is negligible. Fig. 1(b) further shows the per-
formance of the (63, 45) BCH code with OS-OSD (1). Again,
the FER performance of OS-OSD (1) is tightly upper bounded
by (18), verifying our performance analysis of OS-OSD (1).
The theoretical characterization of Pr(S0, w = 1) is again in
line with the simulation results at most of the SNR region. For
this code, it appears that Pr(S0, w= 1)<Pr(w > 1). Hence,
Pr(w>1) dominates in the list error probability of (21). The
performance loss indicated by Pr(S0, w=1) is negligible.

Fig. 2 shows the FER performance of different algorithms
for decoding the (127, 64) BCH code over the AWGN channel.
The OSD (τ ) armed with probabilistic necessary condition
(PNC) [5] and probabilistic sufficient condition (PSC) [8],
denoted as PNC+PSC (τ ), and the order-τ FOSD [18] with
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TABLE I
Pr(Si) IN OS-OSD (4) FOR THE (127, 64) BCH CODE.

SNR(dB) Pr(S0) Pr(S1) Pr(S2) Pr(S3)

2 36.91% 32.53% 17.70% 8.01%
3 60.05% 27.17% 9.19% 2.75%
4 78.74% 17.25% 3.38% 0.54%
5 90.54% 8.61% 0.79% 0.05%

its optimal empirical factor β = 4.3, denoted as FOSD (τ ), are
compared. For PSC, we set τE = 10 for early termination and
τPSC = 25 for skipping the correlation distance calculation
as in [18]. Note that this PSC is also utilized in the OS-OSD
for this code. Fig. 2 shows that the proposed OS-OSD can
yield a similar FER performance as other algorithms for the
code. Fig. 3 further shows the complexity of these decoding
algorithms, in which the average numbers of re-encoded TEPs
of (1) and correlation distance calculations of (2) are measured.
Compared with the PSC+PNC (4) and FOSD (4), the OS-
OSD (4) exhibits a significant complexity reduction, especially
in the low SNR regime. This implies that the proposed CDLB
is more accurate than that of the FOSD. Thus, the OS-OSD can
more effectively prevent the higher-order re-encoding. Table
I presents the statistical results of P (Si) during decoding the
(127, 64) BCH code with OS-OSD (4) (without PSC). It shows
that as the SNR increases, Pr(S0) becomes dominant. This
implies most OS-OSD decoding events terminate after the
phase-0 re-encoding, significantly reducing complexity.
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